
Understanding
API Types
and Choosing
the Right One

2

Guide | Understanding API Types and Choosing the Right One

Introduction��� 3

REST��� 3
How REST Works . 4
When to Use REST . 5
REST Maturity . 5

SOAP��� 6
How SOAP Works . 6
When to Use SOAP . 6
SOAP Maturity . 7

GraphQL��� 8
How GraphQL Works . 8
When to Use GraphQL . 9
GraphQL Maturity . 9

Kafka-based�APIs�(Async�APIs) ��� 10
How Kafka Works . 10
When to Use Kafka . 10
Kafka Maturity . 11

Publish/Subscribe�Pattern�Based�APIs ��� 12
How Pub/Sub Pattern Based APIs Work . 12
When to Use Pub/Sub Pattern Based APIs 12
Pub/Sub Pattern Based APIs Maturity . 13

Webhooks ��� 14
How Webhooks Work . 14
When to Use Webhooks . 14
Webhook Maturity . 15

RPC�(Remote�Procedure�Call)��� 15
How RPC Works . 15
When to Use RPC . 16
RPC Maturity . 16
How gRPC Works . 17
When to Use gRPC . 17
gRPC Maturity . 18

Protocol�Buffers�(Protobufs)��� 19
How Protobufs Work . 19
When to Use Protobufs . 19
Protobuf Maturity . .20

A�Next-Generation�API�Platform ��� 21

RapidAPI�Enterprise�Hub ���22

Table of
Contents

Guide | Understanding API Types and Choosing the Right One

3

Introduction
Application Programming Interfaces (APIs) emerged as a key component for modern
software development practices, enabling development teams to more efficiently create
applications and microservices without having to rewrite common functionality from
scratch . It is not surprising that API adoption is on the rise . In a recent survey conducted
by RapidAPI in 2019, respondents reported that their organization will continue to
increase API usage over the course of 2020 . In fact, almost 67% expect to use APIs
more this year than previously in 2019. The survey also notes that larger development
organizations are already using hundreds of Internal APIs . In fact companies with 5000 to
10,000 software developers use, on the average, more than 300 internal APIs .

As the number of APIs continues to increase, the types of APIs being used in applications
are becoming more varied . Choosing the right type of API for a project requires
understanding the different available types and the best use cases for each one . While
REST APIs have been popular in recent years, developers use many different kinds of
APIs to build their applications depending on their specific requirements . Some may
choose APIs based on performance, scalability, or reliability — while others might choose
an API for its role in simplifying the development process or enabling developers to more
easily modify the code . It is also important to understand that there are many differences,
beginning with the very nature of the API as some are architectural styles while others
are frameworks, or query languages (like GraphQL) .

This guide will highlight the different API formats and specifications, describe the
background of each API, detail the benefits, and provide the optimal use case for
selecting different APIs for your project.

REST
REST (REpresentative State Transfer) is an architectural style that is based on the open
internet philosophy . It was introduced in 2000 in Roy Fielding’s doctoral dissertation,
Architectural Styles and the Design of Network-based Software Architectures . REST APIs are
used to call resources, and allow software to communicate based on standardized principles,
properties, and constraints .

Today, the growth of the API economy is largely driven by REST APIs, and REST has become
the default standard for web APIs . REST APIs are now a core business feature for many
software companies, or even the core product for companies like Stripe and Twilio .

4

Guide | Understanding API Types and Choosing the Right One

How REST Works
REST APIs operate on a simple request/response system . The request includes the HTTP
method (GET, POST, PUT, PATCH, DELETE), endpoint, headers, URL parameters, and the body .
The response returns the relevant data, which can be formatted as JSON, XML, plain text,
images, HTML, and more .

Client Database

REST
API

RESTful APIs can also be designed with many different endpoints that return different types
of data . Accessing multiple endpoints with a REST API requires multiple calls .

Client

Founder InvestorsCompany

A true RESTful API will also conform to the REST architectural constraints outlined by
Fielding’s dissertation including:

1. Client-Server Architecture: The client and server are decoupled to improve scalability
and allow the components to evolve independently .

2. Statelessness: Each request contains the information necessary to service the request

3. Cacheability: Responses can be explicitly or implicitly defined as cacheable or non-
cacheable to improve scalability and performance .

4. Layering: Different layers of the API architecture should work together, creating a
scalable system that is easy to update or adjust .

5. Uniform Interface: Communication between the client and the server must be done
in a standardized language that is independent of both . This improves scalability and
flexibility .

Guide | Understanding API Types and Choosing the Right One

5

When to Use REST
As you can see from the constraints of the REST architectural style, RESTful APIs are a
good fit for projects that need to be flexible, scalable, and fast . These characteristics make
RESTful APIs particularly well-suited for web applications . In addition, if you are looking for
the following characteristics, REST is a strong option:

Familiarity: most people in your engineering team have already used—or at least have
seen —a RESTful API . This type of API, being the most common, will have the shortest
learning curve .

Interoperability: Due to the popularity of REST, nearly every platform and framework has a
built in library capable of interfacing with a REST API that has wide support .

Development efficiencies: REST APIs are reusable, enabling developers to easily create
independent microservices that work independently of one another as they are decoupled
from clients and accessible by multiple applications .

REST Maturity
In recent years, RESTful APIs have become the most popular type of API, due to their flexible
and fast performance . In our survey of over 2000 developers, 62 .5% of respondents reported
using REST in production — making it the most popular technology included in our survey .* An
additional 20% reported POCing or investigating REST for future use .

2000s

REST

Mature Cutting EdgeOlder

Based on these stats — and the increasing development of RESTful APIs as a core business
service for many companies — we anticipate REST APIs will continue to be a popular choice
for years to come .

* Our developer survey was run independently of this document and did not cover all types of APIs discussed in this ebook . The
survey question that asked developers about their familiarity with certain technology trends covered GraphQL, REST, gRPC,
Webhooks, and Serverless & FasS .

6

Guide | Understanding API Types and Choosing the Right One

SOAP
SOAP (Simple Object Access Protocol) is a standardized protocol that relies on XML to make
requests and receive responses . SOAP APIs make data available as a service and are typically
used when performing transactions that involve multiple calls or for applications where
security is the main consideration .

SOAP was initially developed for Microsoft in 1998 to provide a common mechanism for
integrating services on the internet regardless of operating system, object model, or
programming language .

How SOAP Works
The “S” in SOAP stands for Simple, and for good reason — SOAP can be used with less
complexity as it requires less coding in the app layer for transactions, security, and other
functions .

SOAP has three primary characteristics:

1. Extensibility: SOAP allows for extensions that introduce more powerful features, such as
Windows Server Security, Addressing, and more .

2. Neutrality: SOAP is capable of operating over a wide range of protocols, like UDP, JMS,
SMTP, TCP, and HTTP .

3. Independence: SOAP is compatible with nearly any programming language .

SOAP-based requests and responses can be combined with a transport protocol, like HTTP,
for use in web services .

When to Use SOAP
Developers continue to debate the pros and cons of using SOAP and REST . The best one for
your project will be the one that most aligns with your needs . For example, SOAP remains a
top choice for corporate entities and government organizations that prioritize security, even
though REST has largely dominated web applications .

SOAP is a good choice when security is a priority because its standard HTTP protocol makes
it easier to operate across firewalls/proxies without making any modification .

It also has greater transactional reliability, which is another reason why SOAP historically has
been favored by the banking industry and other large entities .

Guide | Understanding API Types and Choosing the Right One

7

SOAP Maturity
SOAP’s introduction in 1998 means it is quite a bit older than most of the other technology
and API types we are looking at in the guide . SOAP dominated the API space for many years
but waned in popularity with the rise of REST .

2000s

REST

SOAP

1990s

Mature Cutting EdgeOlder

However, that isn’t to say REST completely replaces SOAP . There are still specific appli-
cations where SOAP remains the best option, and it will likely continue to be a common choice
for enterprise applications and projects that require enhanced security .

8

Guide | Understanding API Types and Choosing the Right One

GraphQL
GraphQL — a query language that lets the client define the structure of the data required

— was created by developers at Facebook in 2012 . It was developed to support the
complicated data structures required to show the Facebook News Feed on the mobile
application . GraphQL was later open-sourced in 2015 .

GraphQL APIs have two main advantages over other traditional APIs:

1 . GraphQL allows you to request data from multiple resources in a single request . In
comparison, traditional APIs require making multiple requests to fetch each type of
resource .

2 . GraphQL allows you to control exactly what information your application receives in the
response of the API . With traditional APIs, you have less control which can lead to over-
fetching data in certain scenarios .

How GraphQL Works
GraphQL relies on a strongly typed schema . The pre-defined schema is what allows the client
to specify the exact shape of the data returned .

Client

Founder InvestorsCompany

GraphQL

The ability to define the exact request and response structure is also a way to cut down on
the resources and bandwidth required to fetch data, as only the desired data will be included
in the response . This makes GraphQL a powerful tool for projects that might be

Guide | Understanding API Types and Choosing the Right One

9

When to Use GraphQL
GraphQL was developed to overcome some of the limitations of REST APIs . Ultimately, both
use different methods to accomplish similar tasks . GraphQL APIs are a great choice if you are
seeking to reduce the number of queries needed to fetch the required data, when the data is
being pulled from multiple resources .

Much like REST APIs, many companies — including GitHub, Yahoo, and others — have made
GraphQL APIs publicly available for developers .

GraphQL Maturity
GraphQL’s introduction in 2012 makes it one of the newer technologies in this list . In
our recent survey of over 2000 developers, we found 19 .7% of respondents were either
investigating or launching GraphQL as a proof of concept . An additional 36 .4% reported they
are unfamiliar with GraphQL .

2000s

REST

SOAP

1990s

2010s

GraphQL

Mature Cutting EdgeOlder

This indicates that GraphQL is still relatively new . Even though GraphQL was introduced for
a very niche purpose, we expect to see an increase in use in the years to come as developers
become more familiar with it and large companies continue to make GraphQL APIs publicly
available .

10

Guide | Understanding API Types and Choosing the Right One

Kafka-based�APIs�(Async�APIs)
Apache Kafka is a stream-processing software platform originally developed by LinkedIn .
Kafka was open-sourced in 2011 to “provide a unified, high-throughput, low latency platform
for handling real-time data feeds .”

Kafka and Kafka-based APIs have become increasingly popular among large enterprises due
to the unique ability to handle and process data streams and ingest and move large amounts
of data quickly .

How Kafka Works
Kafka works like a pub/sub system using publishers, topics, and subscribers . There are 5 core
Kafka-based APIs:

1. Producer API: Used to publish a stream of records to one or more Kafka topics .

2. Consumer API: Used to subscribe to one or more topics and process the stream of
records produced to them .

3. Streams API: Used to consume input streams from one or more topics and produce an
output stream to one or more output topics . This essentially transforms the input streams
to output streams, allowing the application to act as a stream processor .

4. Connector API: Allows building/running reusable producers or consumers that connect
Kafka topics to existing applications or data sets .

5. Admin API: Allows managing and inspect topics, brokers, and other Kafka objects

Queue

Client Encode
Request

Encoding Service Encode
Request

Encode
Request Confimation

When to Use Kafka
Kafka was originally used to build a set of real-time publish-subscribe feeds on LinkedIn .
Since its initial development, it has expanded to a range of uses for large scale, complex
applications . Kafka shines when it comes to real-time data and analytics — in particular for
streaming data pipelines that get data between systems or applications . Some of the common
uses include operational monitoring data, log aggregation, event sourcing, and stream
processing .

Guide | Understanding API Types and Choosing the Right One

11

Kafka Maturity
Kafka is already being used by many of the world’s leading software companies — including
Airbnb, Pinterest, Cloudflare, PayPal, Spotify, and Twitter . We expect to see even more
companies turn to Kafka and Kafka-based APIs as the technology matures .

2000s

REST

SOAP

1990s

2010s

GraphQL

Kafka

Mature Cutting EdgeOlder

12

Guide | Understanding API Types and Choosing the Right One

Publish/Subscribe�Pattern�Based�APIs
Publish/Subscribe (Pub/Sub) is an asynchronous messaging style used in serverless and
microservices architectures . With this model, messages are not sent to a specific subscriber
but are instead categorized so that they are available to all subscribers of the category .

How Pub/Sub Pattern Based APIs Work
The main characteristic of Pub/Sub APIs is the existence of publishers and subscribers, as the
name implies . Publishers categorize messages, and those that are subscribed to a specified
category receive the message .

As mentioned in the previous section, Kafka APIs are considered to be a type of Pub/Sub
based APIs . Other types of APIs and microservices can also be built around a Pub/Sub
system, including REST APIs .

For example, REST APIs use POST and DELETE operations to integrate with Pub/Sub . POST
operations publish messages, create subscriptions, and get messages from queues . DELETE
is used to unsubscribe .

When to Use Pub/Sub Pattern Based APIs
Pub/Sub based APIs are a great addition to architecture systems that involve many
independent or decoupled components . Pub/Sub based APIs can be used to provide event-
driven notifications as a result of specific events that occur within the system .

This style of system is also highly scalable compared to more traditional client-server
infrastructure .

Guide | Understanding API Types and Choosing the Right One

13

Pub/Sub Pattern Based APIs Maturity
Pub/Sub systems have been around since the late 1980s . However, Pub/Sub systems and
Pub/Sub-based APIs also have more modern implementations . One of the most notable is the
Cloud Pub/Sub by Google Cloud . Based on this, we believe Pub/Sub-based APIs are here to
stay, and these systems may inspire new types of APIs — like Kafka .

2000s

REST

SOAP

1990s

2010s

GraphQL

KafkaPub/Sub

Mature Cutting EdgeOlder

14

Guide | Understanding API Types and Choosing the Right One

Webhooks
Webhooks are similar to APIs but don’t technically qualify as such . With a traditional REST
API, you send a request and get a response . However, no request is required for a webhook .
Instead, the response is sent whenever a specified event occurs .

How Webhooks Work
When a specified event occurs, a webhook makes an HTTP request to a designated URL . This
allows you to push data to your application the moment a particular event happens .

When to Use Webhooks
Webhooks are commonly used when real-time data is required, but the data changes
relatively infrequently . Instead of sending repeated API requests to get live data, a

webhook can be triggered every time there is an update . This will ensure you have accurate
data without having to make frequent API requests, which can be costly or use a lot of
bandwidth .

Client
API Call

Webhook

Server

They are also used to create notifications that are triggered by a specific event, making
them very common for e-commerce, communication, social media, and other platforms you
probably use every day .

Guide | Understanding API Types and Choosing the Right One

15

Webhook Maturity
In our Developer Survey, webhooks were the second most commonly used technology, right
behind REST APIs . Nearly 30% of developers reported using them, with an additional 20%
currently POCing or investigating the for future use . Webhooks are also used by many of
today’s leading software companies, including Twilio, Square, and MailChimp — so we believe
they are here to stay .

2000s

REST

SOAP

1990s

2010s

GraphQL

KafkaPub/Sub

Webhooks

Mature Cutting EdgeOlder

RPC�(Remote�Procedure�Call)
RPC (Remote Procedure Call) is a protocol that uses the client-server model to enable one
program to request a service from another program over a network . As implied by the name,
an RPC can call a function on a remote server . This typically tightly couples the client to the
server, in contrast to newer API designs like REST where the client and server are decoupled .

RPC was theoretically introduced in the early 1970s, and was first used in production in the
early 1980s .

How RPC Works
With an RPC, you can structure your call as if you are calling a function directly on the server .
This familiar format makes RPC easier to start using .

16

Guide | Understanding API Types and Choosing the Right One

When to Use RPC
RPCs are comparatively simple compared to certain types of API calls, making them relatively
easy to understand or update . Calls are typically lightweight and high performance, making
RPC suited for situations where a large volume (think millions or even billions) is expected .
These characteristics also make RPCs a popular choice for IoT environments .

RPC Maturity
Given RPC’s introduction in the 70s, it is one of the oldest technologies in our list . Despite
RPC’s relatively old age, newer and more cutting edge implementations of RPC are still being
used by many large technology companies . One example of a more modern implementation is
gRPC — used by Google, Netflix, Square, and many others .

2000s

REST

SOAP

1990s

2010s

GraphQL

KafkaPub/Sub

Webhooks

RPC

1960s

Mature Cutting EdgeOlder

Guide | Understanding API Types and Choosing the Right One

17

gRPC
gRPC is a high performance, open-source Remote Procedure Call framework . It was
introduced by Google as an open-source version of their internal RPC technology . gRPC is
based on HTTP/2 which can be more efficient than HTTP used by REST and other traditional
methods .

How gRPC Works
gRPC was designed to be easy to use, and much of the setup is generated for you . First, you
start by defining the messages you want to send with protocol buffers (defined in the next
section) .

Next, you need to add a service definition . There are a few different varieties:

1. Unary RPC: The client sends a request, the server sends a response . Most similar to a
REST API .

2. Client Streaming RPC: The client sends multiple messages, the server sends one
response .

3. Server Streaming RPC: The client sends one message, the server sends multiple
messages .

4. Bi-Directional RPC: The client and server can independently send multiple messages to
each other . Most similar to Kafka-based APIs .

Then, you can generate the code for your application using the compiler . Once this is
generated, you can focus on how the logic for the service works and integrate it into the
application .

When to Use gRPC
gRPC is used to build low latency, scalable, distributed systems . One of the more common use
cases for gRPC is in mobile application development, where its native streaming abilities, low
latency, and high performance are beneficial .

18

Guide | Understanding API Types and Choosing the Right One

gRPC Maturity
Over 60% of respondents in our Developer Survey reported being unfamiliar with gRPC . A
mere 3 .40% of respondents said they were using gRPC in production, the lowest of any item
covered in the survey .

2000s

REST

SOAP

1990s

2010s

GraphQL

KafkaPub/Sub

Webhooks

RPC

1960s

gRPC

Mature Cutting EdgeOlder

Guide | Understanding API Types and Choosing the Right One

19

Protocol�Buffers�(Protobufs)
Protocol Buffers (protobufs) are “Google’s language-neutral, platform-neutral, extensible
mechanism for serializing structured data — think XML, but smaller, faster, and simpler .”

As discussed in the previous section, Protobufs play an important role in gRPC and help
minimize bandwidth and latency . However, they can also be used independently of gPRC .

How Protobufs Work
Defining protocol buffer message types in .proto files allows you to specify how the
information is structured . The message format for protobufs is simple, each message has
one or more uniquely numbered fields, and each field has a name and a value type . Once the
messages are defined, the protocol buffer compiler is run to generate data access classes .
These classes can then be used in your application .

When to Use Protobufs
Protobufs are similar to XML, but have a few unique advantages . Notably, they are simple to
use, are 3 to 10 times smaller, and can be 20 to 100 times faster than XML . For this reason,
protocol buffers are commonly used by tech companies — including their creator, Google —
for both RPC systems and for persistent storage of data .

20

Guide | Understanding API Types and Choosing the Right One

Protobuf Maturity
Much like gRPC, Protobufs are relatively new . Since they are typically used in conjunction
with gRPC, they will likely become more widespread as gRPC matures .

2000s

REST

SOAP

1990s

2010s

GraphQL

KafkaPub/Sub

Webhooks

RPC

1960s

gRPC

Protobuffs

Mature Cutting EdgeOlder

Guide | Understanding API Types and Choosing the Right One

21

A�Next-Generation�API�Platform
As you can see based on the large variety of API styles, there is no single “best” type of
API . Rather, the style you should use is dependent on your project goals and technical
requirements .

Whatever APIs you decide to use, your development organization will need a centralized
place to discover and connect to APIs . As part of a modern software development process,
development organizations will need a flexible API platform that is runtime agnostic, supports
both internal and external APIs, and accommodates multiple API types .

Although there are a variety of API runtime technologies and Gateways, a next-generation
API platform that sits above your existing infrastructure . The next-generation API platform
enables you to find, connect, and manage the APIs your organization is using now and those
that you might want to use in the future as other API types become available .

A next-generation platform, like an API Hub, provides a centralized solution for helping
developers as well as product managers, IT, and API creators to find, manage, and connect to
all APIs — using a single key and SDK . A next-generation API Hub enables your organization
to create new efficiencies, accelerating the software development process . Additionally,
an API Hub provides management capabilities that enables you to govern and manage API
consumption with enhanced visibility and control .

When choosing this next generation platform, ensure it includes the following criteria:

• API Publishing: Support for all standards and API types (OAS, GraphQL, etc .)
• Discovery: Search through all available APIs
• Testing/Evaluation: View documentation and test APIs easily
• Provisioning: Determine API access
• Analytics and Metrics: Obtain information about API users and their usage
• Governance and Access Control: Ability to provide fine-grained access to

individuals and groups
• Discussions/Support: Get support for APIs and discuss enhancements

Guide | Understanding API Types and Choosing the Right One

Global HQ

2 Shaw Alley, Fourth Floor

San Francisco, CA 94105

Contact

info@rapidapi.com

www.rapidapi.com

RapidAPI empowers millions of developers to build modern
software with a next-generation API platform including the
world’s largest API hub and fully-integrated solutions for API
collaboration, discovery, testing, publishing, consumption,
and more .

11/22

RapidAPI�Enterprise�Hub
RapidAPI is the world’s largest API Marketplace, enabling millions developers to access
more than 20,000 APIs using a single SDK, API Key, and API dashboard . RapidAPI Enterprise
Hub is a white-labeled, internal API Marketplace used by developers, analysts, and product
managers to discover and connect to internal APIs, as well as external API subscriptions .

The Enterprise API Hub is a white label solution and can connect to your internal systems, and
is deployed seamlessly in the cloud . Once set up, engineering teams can publish their APIs
into the hub for other developers to access and consume . RapidAPI supports all your APIs,
regardless of what Gateways or API management solutions they use .

Your IT team can use a dedicated dashboard to manage who accesses the API and how the
APIs get consumed . With the dashboard, they can access detailed analytics and monitoring
information to ensure data security, compliance, and adherence to SLAs from a single
dashboard .

Additionally, companies also use RapidAPI’s Enterprise Hub as an external marketplace,
enabling customers and partners to find, connect, and manage their APIs .

	Introduction
	REST
	How REST Works
	When to Use REST
	REST Maturity

	SOAP
	How SOAP Works
	When to Use SOAP
	SOAP Maturity

	GraphQL
	How GraphQL Works
	When to Use GraphQL
	GraphQL Maturity

	Kafka-based APIs (Async APIs)
	How Kafka Works
	When to Use Kafka
	Kafka Maturity

	Publish/Subscribe Pattern Based APIs
	How Pub/Sub Pattern Based APIs Work
	When to Use Pub/Sub Pattern Based APIs
	Pub/Sub Pattern Based APIs Maturity

	Webhooks
	How Webhooks Work
	When to Use Webhooks
	Webhook Maturity

	RPC (Remote Procedure Call)
	How RPC Works
	When to Use RPC
	RPC Maturity
	How gRPC Works
	When to Use gRPC
	gRPC Maturity

	Protocol Buffers (Protobufs)
	How Protobufs Work
	When to Use Protobufs
	Protobuf Maturity

	A Next-Generation API Platform
	RapidAPI Enterprise Hub

