
Introduction to
Asynchronous APIs

Whitepaper | Introduction to Asynchronous APIs

2

Introduction to Asynchronous APIs
Asynchronous APIs continue to gain traction. In a recent survey of enterprise
companies, RapidAPI found the number of developers using async APIs
in production nearly quadrupled from 5% in 2019 to 19% in 20201. This
document will introduce best practices for using asynchronous APIs, and
help you determine if and when to use them.

A Look at Classic
(Synchronous) APIs
Before we dig into asynchronous APIs, let’s review some
characteristics of “classic” API types, including REST
and SOAP. These APIs operate in a very transactional
way. First, developers make a request to the API.

DEVELOPER

1. I need {X} handled at some point

API

Then, the request is handled by the API. The developer
can expect a near immediate response from the API.
These transactions are usually measured in milliseconds,
and most will time out after a minute.

2. OK. Done, here you go

DEVELOPER

1. I need {X} handled at some point

API

Synchronous vs.
Asynchronous APIs
With REST and SOAP APIs, the results of the API request
are fast and easy to understand. These traits are often
desirable in software development, which is why this
model is so popular. However, there are some cases
where a new model might be helpful. For example:

•	 What if the task is large, or takes a while to complete?

•	 What if the service is not able to handle the flow of
events?

•	 What if you don’t want to be the one to initiate the
transaction?

If you are running into these problems, asynchronous
APIs can provide a solution. As the name implies,
asynchronous APIs do not have to handle requests at the
same time the request is made. This is quite different
from the classic model used by REST and SOAP APIs.

1	 RapidAPI Annual Developer Survey 2020-2021

https://rapidapi.com/developer-survey/

3

Whitepaper | Introduction to Asynchronous APIs

Four Components of Asynchronous APIs
First, the developer sends a task to the asynchronous system.

DEVELOPER

1. I need {X} handled at some point
ASYNC
SYSTEM API

When the service is available, it can fetch the task from the asynchronous system.

2. I have time, what’s on my list?

DEVELOPER

1. I need {X} handled at some point
ASYNC
SYSTEM API

The service notifies the asynchronous system that the task is complete.

3. OK, {X} is done

2. I have time, what’s on my list?

DEVELOPER

1. I need {X} handled at some point
ASYNC
SYSTEM API

Finally, the asynchronous system notifies the sender the task is complete.

4. FYI, {X} is done 3. OK, {X} is done

2. I have time, what’s on my list?

DEVELOPER

1. I need {X} handled at some point
ASYNC
SYSTEM API

For a less technical explanation of the difference between synchronous and asynchronous
APIs, consider the difference between calling someone on the phone, or emailing someone to
ask a question.

When you call someone, you ask the question and get an answer in a matter of moments.
This is a synchronous conversation. In comparison, if you send an email you must wait for the
response when the person has time to get back to you. This is an asynchronous conversation.

4

Whitepaper | Introduction to Asynchronous APIs

Best Practices for Using Asynchronous APIs
Now that we’ve introduced asynchronous APIs, let’s take a look at some best practices to
keep in mind if you choose to use this kind of API.

1. Know When to Use Asynchronous APIs (and When Not To)
Before you decide to use async APIs, it’s important to consider the use case. The right type
of API for the project is not always going to be an async API. You will likely use a variety of
different API types to achieve the end result.

Here are a few reasons to consider asynchronous APIs:

•	 Asynchronous processing of large tasks can avoid spiking the workload.

•	 Push model is made possible.

•	 New delivery and processing models.

And why asynchronous APIs might not be a good fit:

•	 Some workloads are inherently transactional and not a good match for the async model.

•	 Using asynchronous APIs can complicate onboarding for developers if they are not as
familiar with the async model.

•	 Tools for async APIs might not be as developed (monitoring, security).

•	 Using asynchronous APIs requires a different mindset.

2. Choose the Right Type of Asynchronous API for the Task
Once you’ve determined asynchronous APIs are the right API type for the job, it’s important
to further refine your selection. There are different approaches to async API implementation,
but for the purposes of this paper we will consider two of the most popular — queues
and streams.

Task Management Events Flow

�

5

Whitepaper | Introduction to Asynchronous APIs

There are different considerations and technologies for each of these API types, even though they are all broadly
categorized as asynchronous APIs. The table below breaks down the differences between queues and streams.

Queue Stream
Purpose �Storage service for messages between

different services
Real-time processing of big data

Terminology Messages, Consumers, Producers Events, Publisher, Subscriber

Consumption
Model

Read one item at a time on a FIFO basis,
can re-queue

Chronological consumption, often in
batches

Consumer Cardinality Message consumed by a single
consumer (load balance)

Events routed to all consumers (multiple
effects)

Technology Examples RabbitMQ, Amazon SQS Amazon Kinesis, Kafka, Apache Spark

3. Define a Clear Message Schema, Structure, and SLAs
Developing your queue or stream shouldn’t be done ad hoc. Like a REST API, it should be well documented and
defined. If you don’t define a clear schema, it will lead to further complications and challenges down the road.

AsyncAPI is a great example to reference. The AsyncAPI API specification is a method of defining the interfaces of
asynchronous APIs. It is an attempt to standardize the format, much like OpenAPI does for REST APIs.

4. Build for Failure to Avoid Silent Failures
As you build an asynchronous API, it’s important to plan for events or messages to fail as this will inevitably happen.
If you don’t build for failure, you risk a silent failure. This means the system is producing errors, but nobody knows
anything is failing. You might only find out about the failures down the road when the magnitude is large.

For example, at RapidAPI we improved the billing process for our users by implementing a failure identification
mechanism in asynchronous APIs.

There are two approaches that can help plan for failure:

1.	 Retry processing the failed objects.

2.	 Put the failed objects in a separate (failed) queue for human review.

You can combine these two processes, so the objects will be processed multiple times, and eventually moved to the
dead letter queue if it is not successful.

Use Case Examples
Here are a few use cases that illustrate how you can use asynchronous APIs. Note again that you don’t have to use
the asynchronous model everywhere — in fact many transactions in your project will likely be synchronous. However,
asynchronous APIs are a powerful addition in certain use cases.

Streams: Streams are a popular way to handle analytics. For example, you can send analytics events (logs) to a
stream. The stream will be able to process these events and return data to an analytics processing system.

One benefit of using streams this way is the ability to handle large spikes in volume without bringing down your
system or losing analytics.

Whitepaper | Introduction to Asynchronous APIs

Global HQ

85 2nd Street, Fourth Floor

San Francisco, CA 94105

Contact

info@rapidapi.com

www.rapidapi.com

RapidAPI empowers millions of developers to build modern
software with a next-generation API platform including the
world’s largest API hub and fully-integrated solutions for API
collaboration, discovery, testing, publishing, consumption,
and more.

09/21 Updated 02/23

Queues: Using a queue based approach is one way to handle large file uploads that you might not be able to process
in a second or two.

In this scenario, the file will be pushed to a task queue. A file uploader then takes the file from the queue, and you can
be notified when the upload is complete.

Using queues this way enables you to handle large file uploads without blocking the entire system.

Using Kafka-Based APIs
If you’re ready to get started with asynchronous APIs, RapidAPI recently released the ability to publish
Asynchronous Kafka APIs on both RapidAPI Enterprise Hub and the public RapidAPI Hub. This allows developers
to manage both synchronous and asynchronous APIs from one centralized hub.

It is easy to get started and test Kafka- based APIs directly from your browser — you can see a demo Kafka API on
the RapidAPI Hub here. You can also add your own Kafka APIs to the RapidAPI Hub or RapidAPI Enterprise Hub.
Check out our blog for more information or contact our support team with any additional questions.

Apache Kafka:
A Leading Enterprise Choice
Apache Kafka is a distributed streaming platform that
allows building real-time streaming pipelines and
applications. It was built by LinkedIn in the early 2010s.

Kafka is increasingly used as the message broker
in event-driven architectures with asynchronous
microservices. Kafka clients allow you to write
distributed applications and microservices that read,
write, and process event streams.

Popular use cases for Apache Kafka include messaging,
event sourcing, and log aggregation.

How to Get Started with
Asynchronous APIs
Kafka is increasingly used as the message broker
in event-driven architectures with asynchronous
microservices. Kafka clients allow you to write
distributed applications and microservices that read,
write, and process streams of events. Kafka has been
adopted in more than 80% of Fortune 100 companies
(source), as well as many of RapidAPI’s enterprise
customers.

Asynchronous APIs can be a powerful addition to
your application. When determining whether or not
asynchronous makes sense for your project, it is
important to keep in mind these four best practices:

1.	 Know when to use asynchronous APIs (and when not to)

2.	 Choose the right type of asynchronous APIs for the task

3.	 Define clear message schema, structure, and SLAs

4.	 Build for failure to avoid silent failures

https://rapidapi.com/rapidapi/api/demo-kafka
https://rapidapi.com/rapidapi/api/demo-kafka

